本稿には、2016年に実施された統計検定1級『統計数理』 問1の自作解答案を掲載しています。なお、閲覧にあたっては、以下の点にご注意ください。
- 著作権の関係上、問題文は、掲載することができません。申し訳ありませんが、閲覧者のみなさまでご用意いただければ幸いです。
- この答案は、あくまでも筆者が自作したものであり、公式なものではありません。正式な答案については、公式問題集をご参照ください。
- 計算ミスや誤字・脱字などがありましたら、コメントなどでご指摘いただければ大変助かります。
- スマートフォンやタブレット端末でご覧の際、数式が見切れている場合は、横にスクロールすることができます。
〔1〕最尤推定量の導出
尤度関数 を求めると、
対数尤度関数 を求めると、
パラメータ に関するスコア関数 を求めると、
尤度方程式 を解くと、
最尤推定量の不偏性により、
〔2〕最尤推定量バイアス
正規分布 のモーメント母関数は、
正規分布の標本平均 の従う分布とモーメント母関数は、
最尤推定量 の期待値は、
標本平均のモーメント母関数に を代入すると、
したがって、バイアス は、
ここで、 であり、単調増加関数である指数関数は、
したがって、
つまり、バイアスの符号は正となる。
また、 の期待値を求めると、
したがって、 は の不偏推定量である。
〔3〕最尤推定量の平均二乗誤差
定義に沿って、平均二乗誤差を求めると、
〔2〕の結果から、
ここで、標本平均のモーメント母関数に を代入すると、
よって、最尤推定量 の平均二乗誤差は、
したがって、 のときの極限を取ると、
〔4〕フィッシャー情報量
〔1〕の結果から、フィッシャー情報量の定義式 より、
ここで、分散の公式の変形 より、
したがって、
次に、 の分散について、分散の公式より、
ここで、
両辺の期待値を取ると、
ここで、標本平均のモーメント母関数に を代入すると、
よって、
〔2〕の結果 より、
ここで、 において、次の関数を考えると、
よって、 は、 において、単調増加関数なので、
したがって、 と考えると、
すなわち、 の分散はクラメール・ラオの下限と一致しない(クラメール・ラオの下限よりも大きい)。
関連記事
0 件のコメント:
コメントを投稿