本稿では、多変数関数の極限と連続性を紹介しています。
なお、閲覧にあたっては、以下の点にご注意ください。
- スマートフォンやタブレット端末でご覧の際、数式が見切れている場合は、横にスクロールすることができます。
目次[非表示]
二変数関数
平面上の点集合
関数
不等式
いっぽう、不等式
二変数関数の極限
【定理】
二変数関数の極限値
Algebraic Limit Theorem for Bivariate Functions
関数
【定理】
二変数関数のはさみうちの原理
Squeeze Theorem for Bivariate Functions
点
二変数関数の連続性
関数
二変数関数の四則の連続性
【定理】
二変数関数の四則の連続性
Continuity for Bivariate Functions
関数
二変数関数の最大値・最小値の定理
【定理】
二変数関数の最大値・最小値の定理
Extreme Value Theorem for Bivariate Functions
関数
二変数関数の中間値の定理
【定理】
二変数関数の中間値の定理
Intermediate Value Theorem for Bivariate Functions
関数
二変数関数の合成関数の連続性
【定理】
二変数関数の合成関数の連続性
Continuity of Composite Function of Bivariate Functions
関数
多変数の場合
一般に、点
参考文献
- 馬場 敬之 著. 微分積分キャンパス・ゼミ. 改訂6, マセマ出版社, 2019, p.156-162
0 件のコメント:
コメントを投稿