ジョン・ラチン(2020)『医薬データのための統計解析』 問題9.5 解答例

公開日:

【2022年12月3週】 【A000】生物統計学 【A100】生存時間分析

この記事をシェアする
  • B!
サムネイル画像

本稿は、ジョン・ラチン(2020)『医薬データのための統計解析』の「問題9.5」の自作解答例です。比例ハザード性と比例オッズ性が同時には満たされないことを証明しています。

なお、閲覧にあたっては、以下の点にご注意ください。

  • スマートフォンやタブレット端末でご覧の際、数式が見切れている場合は、横にスクロールすることができます。
  • 曝露(発症)状況を表す右下の添え字は、「0」である場合(n0,π0 など)や「2」である場合(n2,π2 など)がありますが、どちらも「非曝露群(コントロール群)」を表しています。
  • 著作権の関係上、問題文は、掲載しておりません。上述の参考書をお持ちの方は、お手元にご用意してご覧ください。
  • この解答例は、筆者が自作したものであり、公式なものではありません。あくまでも参考としてご覧いただければ幸いです。

問題9.5.1:比例ハザード性と比例オッズ性の両立不可能性

(a)比例ハザードの条件下では、 ϕ=λ1(t)λ2(t) ハザード関数と生存関数の関係式より、これは、 S1(t)=[S2(t)]ϕ と同値である。

このとき生存オッズ比は、 ORS=S1(t)1S1(t)1S2(t)S2(t)=[S2(t)]ϕ1[S2(t)]ϕ1S2(t)S2(t)=[S2(t)]ϕS2(t)1S2(t){1S2(t)}[1+{S2(t)}+{S2(t)}2++{S2(t)}ϕ1]=[S2(t)]ϕ1[1+{S2(t)}+{S2(t)}2++{S2(t)}ϕ1] これは、一般的には定数とならず、経過時間 t の関数となる。

(b)比例オッズの条件下では、 ORS=S1(t)1S1(t)1S2(t)S2(t)=S1(t)F1(t)F2(t)S2(t)=φS2(t)S1(t)=1φF2(t)F1(t) ハザード関数と生存関数、イベント密度関数の関係式より、 λ1(t)=f1(t)S1(t)λ2(t)=f2(t)S2(t) このとき、ハザード比 HR=λ1(t)λ2(t) は、 HR=f1(t)S1(t)S2(t)f2(t)=S2(t)S1(t)f1(t)f2(t)=1φF2(t)F1(t)f1(t)f2(t)=1φf1(t)F1(t)F2(t)f2(t) これは、一般的には定数とならず、経過時間 t の関数となる。

問題9.5.2:比例ハザードをもつモデルの例

ワイブル生存分布のハザード関数の定義式 λ(t)=μγtγ1 より、ハザード比 HR=λ1(t)λ2(t) は、 HR=μ1γtγ1μ2γtγ1=μ1μ2=ϕ いっぽう、生存関数の定義式 S(t)=exp(μtγ) より、生存オッズ比 ORS=S1(t)1S1(t)1S2(t)S2(t) は、 O1=eμ1tγ1eμ1tγO2=eμ2tγ1eμ2tγ ORS=eμ1tγ1eμ1tγ1eμ2tγeμ2tγ=eμ1tγeμ2tγ1eμ2tγ1eμ1tγ=e(μ1μ2)tγ1eμ2tγ1eμ1tγ=e(ϕ1)μ2tγ1eμ2tγ1eϕμ2tγφ したがって、上記の条件(a)を満たす。

問題9.5.3:比例オッズをもつモデルの例

ロジスティック生存分布の生存関数の定義式 S(t)=11+μtγ より、生存オッズ比 ORS=S1(t)1S1(t)1S2(t)S2(t) は、 O1=11+μ1tγ1+μ1tγμ1tγ=1μ1tγO2=11+μ2tγ1+μ2tγμ2tγ=1μ2tγ ORS=1μ1tγ1μ2tγ=μ2μ1=φ いっぽう、ハザード関数の定義式 λ(t)=μγtγ11+μtγ より、ハザード比 HR=λ1(t)λ2(t) は、 HR=μ1γtγ11+μ1tγ1+μ2tγμ2γtγ1=μ1γtγ1μ2γtγ11+μ2tγ1+μ1tγ=1φ1+μ2tγ1+μ1tγϕ したがって、上記の条件(b)を満たす。

参考文献

  • ジョン・ラチン 著, 宮岡 悦良 監訳, 遠藤 輝, 黒沢 健, 下川 朝有, 寒水 孝司 訳. 医薬データのための統計解析. 共立出版, 2020, p.562

関連記事

自己紹介

自分の写真

yama

大学時代に読書の面白さに気づいて以来、読書や勉強を通じて、興味をもったことや新しいことを学ぶことが生きる原動力。そんな人間が、その時々に学んだことを備忘録兼人生の軌跡として記録しているブログです。

このブログを検索

ブログ アーカイブ

QooQ