本稿では、標本対数人口寄与危険割合オッズの漸近分布の導出を行っています。
なお、閲覧にあたっては、以下の点にご注意ください。
- スマートフォンやタブレット端末でご覧の際、数式が見切れている場合は、横にスクロールすることができます。
- 曝露(発症)状況を表す右下の添え字は、「0」である場合($n_0,\pi_0$ など)や「2」である場合($n_2,\pi_2$ など)がありますが、どちらも「非曝露群(コントロール群)」を表しています。
- 漸近的な性質を用いる際は、①中心極限定理が成り立つ、②漸近分散を推定する際に、母数をその一致推定量で置き換えることができるということが成り立つと仮定しています。
- デルタ法を用いる際、剰余項(2次の項)が漸近的に無視できる($0$に確率収束する)と仮定しています。
【定理】標本対数人口寄与危険割合オッズの漸近分布
【定理】
標本対数人口寄与危険割合オッズの漸近分布
Asymptotic Distribution of Sample PAR Fraction Logarithmic Odds
人口寄与危険割合の母数と標本値をロジット変換するとき、 \begin{align} \theta=\log{\frac{\mathrm{PAR}}{1-\mathrm{PAR}}}\\ \hat{\theta}=\log{\frac{\mathrm{\widehat{PAR}}}{1-\mathrm{\widehat{PAR}}}} \end{align} 漸近的に \begin{align} \hat{\theta} \sim \mathrm{N} \left[\log{\frac{\alpha_1 \left(\pi_1-\pi_0\right)}{\pi_0}},\frac{\pi_1}{ \left(\pi_1-\pi_0\right)^2} \left\{\frac{n_0\pi_0 \left(1-\pi_1\right)+n_1\pi_0 \left(1-\pi_0\right)}{n_1n_0\pi_0}\right\}\right] \end{align} 漸近分散の一致推定量は、 \begin{align} \hat{V} \left[\hat{\theta}\right]=\frac{{\hat{\pi}}_1}{ \left({\hat{\pi}}_1-{\hat{\pi}}_0\right)^2} \left\{\frac{n_0{\hat{\pi}}_0 \left(1-{\hat{\pi}}_1\right)+n_1{\hat{\pi}}_0 \left(1-{\hat{\pi}}_0\right)}{n_1n_0{\hat{\pi}}_0}\right\} \end{align} で与えられる。
導出
二項分布の正規近似により、標本比率は漸近的に \begin{gather} p_1 \sim \mathrm{N} \left[\pi_1,\frac{\pi_1 \left(1-\pi_1\right)}{n_1}\right]\\ p_0 \sim \mathrm{N} \left[\pi_0,\frac{\pi_0 \left(1-\pi_0\right)}{n_0}\right] \end{gather} 標本比率ベクトルを \begin{align} \boldsymbol{p}= \left(\begin{matrix}p_1\\p_0\\\end{matrix}\right) \end{align} 期待値ベクトルを \begin{align} \boldsymbol{\pi}= \left(\begin{matrix}\pi_1\\\pi_0\\\end{matrix}\right) \end{align} 分散・共分散行列を \begin{align} \boldsymbol{\Omega}= \left[\begin{matrix}\frac{\pi_1 \left(1-\pi_1\right)}{n_1}&0\\0&\frac{\pi_0 \left(1-\pi_0\right)}{n_0}\\\end{matrix}\right] \end{align} として、 \begin{gather} G \left(\boldsymbol{\pi}\right)=\theta=\frac{\alpha_1 \left(\pi_1-\pi_0\right)}{\pi_0}\\ G \left(\boldsymbol{p}\right)=\hat{\theta}=\frac{\alpha_1 \left(p_1-p_0\right)}{p_0} \end{gather} と変数変換する。 多変量のデルタ法を用いて $G \left(\boldsymbol{p}\right)$ を期待値 $E \left(\boldsymbol{p}\right)=\boldsymbol{\pi}$ まわりでテイラー展開すると、偏導関数ベクトルは、 \begin{align} \boldsymbol{H} \left(\boldsymbol{\pi}\right)= \left(\begin{matrix}\frac{G \left(\boldsymbol{\pi}\right)}{\partial\pi_1}\\\frac{G \left(\boldsymbol{\pi}\right)}{\partial\pi_2}\\\end{matrix}\right)= \left[\begin{matrix}\frac{1}{\pi_1-\pi_0}\\-\frac{\pi_1}{\pi_0 \left(\pi_1-\pi_0\right)}\\\end{matrix}\right] \end{align} 多変量のデルタ法の期待値と分散の公式より、 \begin{align} E \left[G \left(\boldsymbol{p}\right)\right]\cong G \left(\boldsymbol{\pi}\right)=\frac{\alpha_1 \left(\pi_1-\pi_0\right)}{\pi_0} \end{align} \begin{align} V \left[G \left(\boldsymbol{p}\right)\right]&= \left[\begin{matrix}\frac{1}{\pi_1-\pi_0}&-\frac{\pi_1}{\pi_0 \left(\pi_1-\pi_0\right)}\\\end{matrix}\right] \left[\begin{matrix}\frac{\pi_1 \left(1-\pi_1\right)}{n_1}&0\\0&\frac{\pi_0 \left(1-\pi_0\right)}{n_0}\\\end{matrix}\right] \left[\begin{matrix}\frac{1}{\pi_1-\pi_0}\\-\frac{\pi_1}{\pi_0 \left(\pi_1-\pi_0\right)}\\\end{matrix}\right]\\ &=\frac{1}{ \left(\pi_1-\pi_0\right)^2} \cdot \frac{\pi_1 \left(1-\pi_1\right)}{n_1}+\frac{\pi_1^2}{\pi_0^2 \left(\pi_1-\pi_0\right)^2} \cdot \frac{\pi_0 \left(1-\pi_0\right)}{n_0}\\ &=\frac{\pi_1 \left(1-\pi_1\right)}{n_1 \left(\pi_1-\pi_0\right)^2}+\frac{\pi_1^2 \left(1-\pi_0\right)}{n_0\pi_0 \left(\pi_1-\pi_0\right)^2}\\ &=\frac{\pi_1}{ \left(\pi_1-\pi_0\right)^2} \left\{\frac{1-\pi_1}{n_1}+\frac{\pi_1 \left(1-\pi_0\right)}{n_0\pi_0}\right\}\\ &=\frac{\pi_1}{ \left(\pi_1-\pi_0\right)^2} \left\{\frac{n_0\pi_0 \left(1-\pi_1\right)+n_1\pi_1 \left(1-\pi_0\right)}{n_1n_0\pi_0}\right\} \end{align} 母比率 $\pi_i$ を一致推定量である標本比率 $p_i$ で置き換えると、漸近分散の一致推定量は、 \begin{align} \hat{V} \left[\hat{\theta}\right]=\frac{p_1}{ \left(p_1-p_0\right)^2} \left\{\frac{n_0p_0 \left(1-p_1\right)+n_1p_0 \left(1-p_0\right)}{n_1n_0p_0}\right\} \end{align} $\blacksquare$
参考文献
- ジョン・ラチン 著, 宮岡 悦良 監訳, 遠藤 輝, 黒沢 健, 下川 朝有, 寒水 孝司 訳. 医薬データのための統計解析. 共立出版, 2020, p.54-56
- Walter, S.D.. The Estimation and Interpretation of Attributable Risk in Health Research. Biometrics. 1976, 32(4), p.829-849, doi: 10.2307/2529268
0 件のコメント:
コメントを投稿