多項分布のモーメント母関数の導出

公開日:

【2023年4月1週】 【B000】数理統計学 【B050】多次元確率分布

この記事をシェアする
  • B!
サムネイル画像

本稿では、定義に沿った方法で多項分布のモーメント母関数を導出しています。多項定理の知識を必要とします。

なお、閲覧にあたっては、以下の点にご注意ください。

  • スマートフォンやタブレット端末でご覧の際、数式が見切れている場合は、横にスクロールすることができます。

【公式】多項分布のモーメント母関数

【公式】
多項分布のモーメント母関数
Moment-Generating Function of Multinomial Distribution

多項分布 MN(n,p) のモーメント母関数 MX(θ1,θ2,,θk) は、 MX(θ)={p1eθ1+p2eθ2++pkeθk}n で与えられる。

導出

導出

モーメント母関数の定義式 MX(θ)=eθ1X1+θ2X2++θnXnf(x) より、 MX(θ)=n1+n2++nk=neθ1x1+θ2x2+θkxkn!x1!xk!p1x1pkxk=n1+n2++nk=nn!x1!xk!(p1eθ1)x1(p2eθ2)x2(pkeθk)xk 多項定理 (x1+x2++xk)n=n1+n2++nk=nn!n1!n2!nk!x1n1x2n2xknk より、 MX(θ)={p1eθ1+p2eθ2++pkeθk}n

参考文献

  • 野田 一雄, 宮岡 悦良 著. 入門・演習数理統計. 共立出版, 1990, p.124
  • 黒木 学 著. 数理統計学:統計的推論の基礎. 共立出版, 2020, p.96

関連記事

自己紹介

自分の写真

yama

大学時代に読書の面白さに気づいて以来、読書や勉強を通じて、興味をもったことや新しいことを学ぶことが生きる原動力。そんな人間が、その時々に学んだことを備忘録兼人生の軌跡として記録しているブログです。

このブログを検索

ブログ アーカイブ

QooQ