平方変換後の確率密度関数の導出

公開日: 更新日:

【2023年3月2週】 【B000】数理統計学 【B020】確率変数と確率分布

この記事をシェアする
  • B!
サムネイル画像

本稿では、平方変換後の確率密度関数の公式を導出しています。

なお、閲覧にあたっては、以下の点にご注意ください。

  • スマートフォンやタブレット端末でご覧の際、数式が見切れている場合は、横にスクロールすることができます。

【公式】平方変換後の確率密度関数

【公式】
平方変換後の確率密度関数
Probability Density Function after Square Transformation

連続型確率変数 $X$ の累積分布関数と確率密度関数をそれぞれ \begin{align} F \left(x\right) \quad f \left(x\right) \end{align} とし、 平方変換を \begin{gather} Y=X^2 \end{gather} とするとき、 確率変数 $Y$ の確率密度関数は、 \begin{align} g \left(y\right)=\frac{1}{2\sqrt y} \left\{f \left(\sqrt y\right)+f \left(-\sqrt y\right)\right\} \end{align} で与えられる。

導出

導出

確率変数 $Y$ の累積分布関数を $G \left(y\right)$ とすると、累積分布関数の定義式 $F \left(x\right)=P \left(X \le x\right)$ より、 \begin{align} G \left(y\right)&=P \left(Y \le y\right)\\ &=P \left(X^2 \le y\right)\\ &=P \left(-\sqrt y \le X \le \sqrt y\right) \end{align} 累積分布関数の定義式 $G \left(x\right)=P \left(X \le x\right)$ より、 \begin{align} G \left(y\right)=F \left(\sqrt y\right)-F \left(-\sqrt y\right) \end{align} 確率密度関数を $g \left(y\right)$ とすると、累積分布関数と確率密度関数との関係 $f \left(x\right)=\frac{d}{dx}F \left(x\right)$ より、 \begin{align} g \left(y\right)&=\frac{d}{dy}G \left(y\right)\\ &=\frac{d}{dy} \left\{F \left(\sqrt y\right)-F \left(-\sqrt y\right)\right\}\\ &=f \left(\sqrt y\right) \cdot \frac{1}{2\sqrt y}-f \left(-\sqrt y\right) \cdot \left(-\frac{1}{2\sqrt y}\right)\\ &=\frac{1}{2\sqrt y} \left\{f \left(\sqrt y\right)+f \left(-\sqrt y\right)\right\} \end{align} $\blacksquare$

参考文献

  • 久保川 達也 著, 新井 仁之, 小林 俊行, 斎藤 毅, 吉田 朋広 編. 現代数理統計学の基礎. 共立出版, 2017, p.25

関連記事

自己紹介

自分の写真

yama

大学時代に読書の面白さに気づいて以来、読書や勉強を通じて、興味をもったことや新しいことを学ぶことが生きる原動力。そんな人間が、その時々に学んだことを備忘録兼人生の軌跡として記録しているブログです。

このブログを検索

ブログ アーカイブ

QooQ