ガンマ分布の期待値・分散の導出

公開日:

【2023年3月5週】 【B000】数理統計学 【B040】連続型の確率分布

この記事をシェアする
  • B!
サムネイル画像

本稿では、①定義に沿った方法、②モーメント母関数を用いる方法、③互いに独立に指数分布に従う確率変数の和と考える方法の3通りの方法で、ガンマ分布の期待値と分散を導出しています。①の方法は、ガンマ関数の性質を必要とするので、②・③の方法が簡単です。

なお、閲覧にあたっては、以下の点にご注意ください。

  • スマートフォンやタブレット端末でご覧の際、数式が見切れている場合は、横にスクロールすることができます。

【公式】ガンマ分布の期待値・分散

【公式】
ガンマ分布の期待値・分散
Expected Value and Variance of Gamma Distribution

ガンマ分布 Ga(α,β) の期待値 E(X) と分散 V(X) は、 E(X)=αβV(X)=αβ2 で与えられる。

導出法①:定義に沿った方法

導出

(i)期待値
期待値の定義式 E(X)=xf(x)dx より、 E(X)=0x0dx+0xf(x)dx=0xβαΓ(α)xα1eβxdx=0βαΓ(α)xα+11eβxdx=βαΓ(α)0xα+11eβxdx ガンマ関数の公式 Γ(α)βα=0xα1eβxdx より、 E(X)=βαΓ(α)Γ(α+1)βα+1 ガンマ関数の性質 Γ(α+1)=αΓ(α) より、 E(X)=βαΓ(α)αΓ(α)βα+1=αβ

(ii)分散
2乗の期待値の定義式 E(X2)=x2f(x)dx より、 E(X2)=0x20dx+0x2f(x)dx=0x2βαΓ(α)xα1eβxdx=0βαΓ(α)xα+21eβxdx=βαΓ(α)0xα+21eβxdx ガンマ関数の公式 Γ(α)βα=0xα1eβxdx より、 E(X2)=λαΓ(α)Γ(α+2)βα+2 ガンマ関数の性質 Γ(α+2)=α(α+1)Γ(α) より、 E(X2)=βαΓ(α)α(α+1)Γ(α)βα+2=α(α+1)β2 分散の公式 V(X)=E(X2){E(X)}2 より、 V(X)=α(α+1)β2α2β2=αβ2

導出法②:モーメント母関数を用いる方法

導出

(i)期待値
指数分布のモーメント母関数の公式より、 MX(θ)=βα(βθ)α モーメント母関数の1階微分を求めると、合成関数の微分法より、 MX(1)(θ)=βα{α(βθ)α+1}ddθ(βθ)=αβα(βθ)α+1 1次モーメントとモーメント母関数の関係 MX(1)(0)=E(X) より、 E(X)=αβαβα+1=αβ

(ii)分散
モーメント母関数の2階微分を求めると、合成関数の微分法より、 MX(2)(θ)=αβα{α+1(βθ)α+2}ddθ(βθ)=α(α+1)βα(βθ)α+2 2次モーメントとモーメント母関数の関係 MX(2)(0)=E(X2) より、 E(X2)=α(α+1)βαβα+2=α(α+1)β2 分散の公式 V(X)=E(X2){E(X)}2 より、 V(X)=α(α+1)β2α2β2=αβ2

導出法③:互いに独立に指数分布に従う確率変数の和と考える方法

導出

ガンマ分布の確率変数 Y を互いに独立に指数分布に従う確率変数 Xi (i=1,2,,α) の和と考えると、 Y=X1+X2++Xα また、指数分布の期待値と分散の公式より、 E(X)=1βV(X)=1β2 期待値の性質 E(i=1nXi)=i=1nE(Xi) より、 E(Y)=E(i=1αXi)=i=1α1β=αβ 分散の性質 V(i=1nXi)=i=1nV(Xi) より、 V(Y)=V(i=1αXi)=i=1α1β2=αβ2

参考文献

  • 野田 一雄, 宮岡 悦良 著. 入門・演習数理統計. 共立出版, 1990, p.137
  • 稲垣 宣生 著. 数理統計学. 裳華房, 2003, p.44
  • 黒木 学 著. 数理統計学:統計的推論の基礎. 共立出版, 2020, p.109

関連記事

自己紹介

自分の写真

yama

大学時代に読書の面白さに気づいて以来、読書や勉強を通じて、興味をもったことや新しいことを学ぶことが生きる原動力。そんな人間が、その時々に学んだことを備忘録兼人生の軌跡として記録しているブログです。

このブログを検索

ブログ アーカイブ

QooQ